Drosophila painless is a Ca2+-requiring channel activated by noxious heat.
نویسندگان
چکیده
Thermal changes activate some members of the transient receptor potential (TRP) ion channel super family. They are primary sensors for detecting environmental temperatures. The Drosophila TRP channel Painless is believed responsible for avoidance of noxious heat because painless mutant flies display defects in heat sensing. However, no studies have proven its heat responsiveness. We show that Painless expressed in human embryonic kidney-derived 293 (HEK293) cells is a noxious heat-activated, Ca(2+)-permeable channel, and the function is mostly dependent on Ca(2+). In Ca(2+)-imaging, Painless mediated a robust intracellular Ca(2+) (Ca(2+)(i)) increase during heating, and it showed heat-evoked inward currents in whole-cell patch-clamp mode. Ca(2+) permeability was much higher than that of other cations. Heat-evoked currents were negligible in the absence of extracellular Ca(2+) (Ca(2+)(o)) and Ca(2+)(i), whereas 200 nm Ca(2+)(i) enabled heat activation of Painless. Activation kinetics were significantly accelerated in the presence of Ca(2+)(i). The temperature threshold for Painless activation was 42.6 degrees C in the presence of Ca(2+)(i), whereas the threshold was significantly increased to 44.1 degrees C when only Ca(2+)(o) was present. Temperature thresholds were further reduced after repetitive heating in a Ca(2+)-dependent manner. Ca(2+)-dependent heat activation of Painless was observed at the single-channel level in excised membranes. We found that a Ca(2+)-regulatory site is located in the N-terminal region of Painless. Painless-expressing HEK293 cells were insensitive to various thermosensitive TRP channel activators including allyl isothiocyanate, whereas mammalian TRPA1 inhibitors, ruthenium red, and camphor, reversibly blocked heat activation of Painless. Our results demonstrate that Painless is a direct sensor for noxious heat in Drosophila.
منابع مشابه
Drosophila Nociceptors Mediate Larval Aversion to Dry Surface Environments Utilizing Both the Painless TRP Channel and the DEG/ENaC Subunit, PPK1
A subset of sensory neurons embedded within the Drosophila larval body wall have been characterized as high-threshold polymodal nociceptors capable of responding to noxious heat and noxious mechanical stimulation. They are also sensitized by UV-induced tissue damage leading to both thermal hyperalgesia and allodynia very similar to that observed in vertebrate nociceptors. We show that the class...
متن کاملConcentration dependent effect of morphine, aspirin, capsaicin and chili pepper hydro alcoholic extract on thermal and chemical pain model in fruit fly (Drosophila melanogaster)
Introduction: Pain research using animal models is related to ethical concerns, so invertebrates and insects have been recommended by researchers. In the present study, the nociceptive and antinociceptive effects of capsaicin, aspirin, morphine and chili extract were examined using fruit fly (Drosophila melanogaster) as an alternative for rodent pain model. Methods: Stage 3 of larvae and ad...
متن کاملpainless, a Drosophila Gene Essential for Nociception
We describe a paradigm for nociception in Drosophila. In response to the touch of a probe heated above 38 degrees C, Drosophila larvae produce a stereotypical rolling behavior, unlike the response to an unheated probe. In a genetic screen for mutants defective in this noxious heat response, we identified the painless gene. Recordings from wild-type larval nerves identified neurons that initiate...
متن کاملDrosophila TRPA Channel Painless Inhibits Male–Male Courtship Behavior through Modulating Olfactory Sensation
The Drosophila melanogaster TRPA family member painless, expressed in a subset of multidendritic neurons embeding in the larval epidermis, is necessary for larval nociception of noxious heat or mechanical stimuli. However, the function of painless in adult flies remains largely unknown. Here we report that mutation of painless leads to a defect in male-male courtship behavior and alteration in ...
متن کاملSmall conductance Ca2+-activated K+ channels induce the firing pause periods during the activation of Drosophila nociceptive neurons
In Drosophila larvae, Class IV sensory neurons respond to noxious thermal stimuli and provoke heat avoidance behavior. Previously, we showed that the activated neurons displayed characteristic fluctuations of firing rates, which consisted of repetitive high-frequency spike trains and subsequent pause periods, and we proposed that the firing rate fluctuations enhanced the heat avoidance (Terada ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 40 شماره
صفحات -
تاریخ انتشار 2008